Water chemistry (chapters 2 and 3)

Page 1

Water (H_2O)

• The most abundant molecule in living things

 $\sqrt{\text{Our bodies}}$ are about half water by weight

Figs 2.10 and 26.2

Water has many properties that are essential to sustaining life

• Water dissolves many substances

 $\sqrt{\text{This}}$ allows substances to be easily transported in body fluids

• Water cools when it evaporates

 \sqrt{We} can lower body temperature through sweating

Page 2

Hydrophilic molecules (also called polar or lipophobic molecules)

Molecules that dissolve in water

 $\sqrt{\text{Ex: Ions (salts), carbohydrates, proteins}}$

Fig 2.15

Hydrophobic molecules (also called non-polar or lipophilic molecules)

Molecules that do not dissolve in water

 $\sqrt{Ex: Fats, oils, waxes}$

• Molecules that are hydrophobic usually have large regions made of only carbon and hydrogen atoms

The "like mixes with like" principle:

Hydrophilic molecules mix with other hydrophilic molecules, not with hydrophobic molecules

Hydrophobic molecules mix with other hydrophobic molecules, not with hydrophilic molecules

Dissolve

When molecules become evenly spread out with a liquid

- Solute = The substance that is dissolved in the liquid
- Solvent = The liquid that does the dissolving

 \sqrt{W} ater is the solvent in all body fluids

• Solution = The liquid with the solute dissolved in it

Diffusion

The movement of a solute from an area of its high concentration to an area of its low concentration

• Cell membranes are barriers that prevent most solutes from diffusing through them

 \sqrt{W} ater can pass through cell membranes

Fig 3.3

Osmosis

The movement of water across a cell membrane towards whichever side has the highest solute concentration

- "Water moves towards solutes"
- Hypertonic = A solution with a higher solute concentration than a cell

 $\sqrt{\text{Cells}}$ lose water by osmosis in hypertonic solutions

 $\sqrt{}$ The cell will shrink and crenate (shrivel)

• Hypotonic = A solution with a lower solute concentration than a cell

 $\sqrt{\text{Cells gain water by osmosis in hypotonic solutions}}$

 $\sqrt{}$ The cell will enlarge and may lyse (burst)

- Isotonic = A solution with an equal solute concentration to a cell
 - $\sqrt{\text{Cells}}$ stay the same size in isotonic solutions because they don't gain or lose water through osmosis
 - $\sqrt{\text{Blood}}$ and other body fluids are isotonic solutions

 $\sqrt{\text{Most hospital IV solutions are also isotonic solutions}}$ Figs 3.7 and 3.8

Acid

Any molecule that adds H⁺ ions to a solution

• Examples:

HC1	->	H^{+}	+	Cl ⁻
Hydrochloric acid				

H_2CO_3	->	H^{+}	+	HCO_3^-
Carbonic acid				
				Fig 2.16

Base

Any molecule that removes H⁺ ions from a solution

• Examples:

 OH^- + H^+ -> H_2O Hydroxide ion

 $HCO_3^- + H^+ \rightarrow H_2CO_3$ Bicarbonate ion

Fig 2.16

Page 6

pH scale

A number (from 0 to 14) that indicates the H^+ concentration of a solution

- The pH is how acidic or how basic the solution is
- Pure water has a pH of 7 and is called "neutral" (not acidic or basic)
- \bullet Solutions that are acidic have a higher $[H^{\scriptscriptstyle +}]$ than pure water

 $\sqrt{\text{Acidic solutions have pHs lower than 7}}$

 $\sqrt{}$ The higher the [H⁺], the lower the pH

• Solutions that are basic have a lower [H⁺] than pure water

 $\sqrt{\text{Basic solutions have pHs higher than 7}}$

 $\sqrt{}$ The lower the [H⁺], the higher the pH

Fig 2.17

Buffer

Substances that (when added to a solution) minimize changes in the solution's pH

- Buffers make a solution resistant to acids and bases
- Blood is buffered by the carbonic acid and bicarbonate ions in the blood
- The carbonic acid replaces any lost H⁺

 $H_2CO_3 \rightarrow HCO_3^- + H^+$

- The bicarbonate ion absorbs any excess H⁺
 - HCO_3^- + H^+ \rightarrow H_2CO_3