Review questions for Respiratory system lecture

Multiple choice review questions

1) The cilia hairs and mucus of the conducting passages

- A) filter impurities from the inspired air.
- B) reduce pulmonary pressure.
- C) reduce the surface tension in the alveoli.
- D) keep the lungs moist so gas diffusion can occur.
- 2) The conducting passages of the respiratory system do not
 - A) warm the inspired air.
 - B) exchange gases with the blood.
 - C) clean the inspired air.

3) Alveoli are microscopic air sacs branching off the

- A) bronchi.
- B) bronchioles.
- C) tracheary elements.
- D) epiglottis.

4) The ability of the lung to return to its normal size after stretching is known as

- A) resilience.
- B) compliance.
- C) capacitance.
- D) elasticity.

6) A chest wound can introduce air into the pleura space, leading to a collapsed lung, a condition known as

- A) intrapleural pressure.
- B) respiratory distress syndrome.
- C) pneumothorax.
- D) decompression sickness.

7) Expansion of the lungs produces _____ pressure in the lungs.

- A) positive
- B) negative
- C) constant
- D) saturated

13) The diffusion of oxygen from the alveoli into the blood of the alveolar capillaries is rapid and involves diffusion across how many layers of cells?

- A) 2
- B) 3
- C) 4
- D) 5

15) Bicarbonate ion (HCO3-) and hydrogen (H+) ions result from a reaction of _____ with water.

- A) oxygen
- B) hydrogen
- C) carbon dioxide
- D) carbon monoxide

16) Hypoventilation by a person with normal lung function tends to cause

- A) a rise in blood pH.
- B) increased CO_2 in the blood
- C) increased O_2 in the blood
- D) acidosis.
- E) both b and d

19) An increase in the amount of ______ in the blood will result in ______ ventilation.

- A) H⁺; increased
- B) acid; decreased
- C) O2; increased
- D) CO2; decreased

20) Sensory neurons in the breathing control centers of the brain are where the blood is analyzed for

- A) Bicarbonate ion
- B) O_2
- C) H⁺
- D) CO_2

21) The rate and depth of respiration are set by control centers located in the

- A) pleurae.
- B) lungs.
- C) brain stem.
- D) diaphragm.

22) In response to acidosis, ventilation will _____. This change is ventilation is called

- A) decrease; hypoventilation
- B) decrease; hyperventilation
- C) increase; hypoventilation
- D) increase; hyperventilation

Answers to multiple choice review questions:

1) A	7) B	20) C
2) B	13) A	21) C
3) B	15) C	22) D
4) D	16) E	
6) C	19) A	

Fill-in-the-blank review questions

1) The lungs are normally kept clean because _____ located in the _____ remove particles and debris from the air that is inspired.

2) _____ means to breathe in, while _____ refers to breathing out.

3) The "Adam's apple" refers to the largest cartilage of the _____.

4) The _____ is another term for the windpipe, a sturdy tube supported by rings of cartilage.

5) The casual phrase 'voice box' refers to the _____.

6) At the top of the larynx, the _____ acts as a flexible flap that prevents food from entering the larynx.

7) The structure on the neck commonly called the Adam's apple is the _____.

8) The trachea, or windpipe, descends from the larynx into the _____ body cavity, where it ends by dividing to give rise to the _____.

9) The posterior wall of the trachea adjoins the anterior wall of another tube passing through the thoracic cavity, the _____, which carries food downward to the stomach.

10) Lungs have the property of _____which is the tendency to return to its initial size after being distended (stretched); This property assists in pushing air out of the lungs during expiration.

11) Label the parts of the upper respiratory tract. Use the correct anatomical terms.

12) Bronchi continue to branch until they form _____, the smallest conducting passages in the lungs.

13) Bubble-like structures called _____ (singular: _____) are the only lung structures in which gas exchange with the blood occurs. Air in the bronchi and bronchioles cannot exchange gases with the blood.

14) In the blank spaces after the respiratory system structures below, write a number (from 1 - 8) to show the order that you would encounter them if you were an inhaled molecule of O₂.

Bronchiole _____ Epiglottis _____ Pharynx _____ Alveoli _____ Bronchi _____ Trachea _____ Larynx _____ Capillary _____

15) Air enters the lungs during inspiration because the pressure in the lungs is _____ than the atmospheric air pressure outside the lungs.

16) Normal expiration is caused by the _____ of the lung tissue and relaxation of the _____ and _____.

18) An unforced, or quiet, inspiration results primarily from the contraction of the _____ muscle and the _____ muscles, which expand the volume of the lungs.

19) Contraction of the diaphragm causes it to move _____, resulting in a(n) _____ in the size of the thoracic cavity and a(n) _____ in pressure within the lungs.

20) Contraction of the _____ elevates the ribs and sternum, resulting in an increase in the size of the thoracic cavity and a(n) _____ in pressure within the lungs.

21) Many organs in the body (such as the heart, lungs, and digestive organs) are surrounded by a fluid-filled membrane. What is the term for <u>any</u> fluid filled membrane in the body?

22) Answer the following questions about the serosa that surrounds the lungs.

a) What is the name of the serosa that surrounds the lungs?

b) The side of the lung serosa that attaches to the lungs is called its _____ face.

c) The side of the lung serosa that attaches to the walls of the thoracic cavity is called its ______ face.

23) Pulmonary function tests evaluate respiratory function using a _____ to measure respiratory volumes and capacities.

33) In the systemic loop, CO_2 moves out of/into (circle one) the blood and oxygen moves out of/into (circle one) of the blood.

34) In the pulmonary loop, CO_2 moves out of/into (circle one) the blood and oxygen moves out of/into (circle one) of the blood.

35) The partial pressure (concentration) of carbon dioxide in the alveoli is higher/lower (circle one) than in the pulmonary loop arteries.

36) The partial pressure of carbon dioxide in the tissue fluid is always higher/lower (circle one) than in the systemic loop arteries.

37) One of the functions of the blood is to transport O_2 from the lungs to the other tissues. Answer the following questions about how the blood carries the oxygen.

a) The blood cell that carries O₂: _____

b) The protein in (a) above that carries O₂: _____

c) The metal atom on (b) above that carries O₂: _____

39) Each molecule of hemoglobin can carry _____ (how many?) molecules of oxygen.

40) Most of the carbon dioxide in the blood is transported as ______ ion; conversion of carbon dioxide to this ion dramatically increases the amount of CO_2 that the blood can transport because the ion dissolves better in the blood than CO_2 .

42) The chemical reaction that forms carbonic acid is: _____.

43) Carbonic acid dissociates to form _____ and _____. The chemical equation for this reaction is written as _____.

44)The carbonic acid, bicarbonate ion, and H^+ in the blood come from CO_2 that is made by the cells. The cells make CO_2 as a waste product of the process of _____, which is a process cells use to produce energy for themselves.

45) The breathing control centers are located in the _____ region of the body (be as specific as possible).

46) The sensory neurons that monitor the O_2 content of the blood are located in two blood vessels: The _____ and the _____ .

47) When the blood levels of CO_2 rise above normal, the pH of the blood _____.

48) Hypoventilation would cause the CO2 levels to rise in the plasma producing a(n) _____ in H⁺ concentration.

49) In alkalosis, the blood's pH is _____ and the blood's H+ concentration is _____.

50) When the sensory neurons in the breathing control center sense a decrease in the pH of the blood, they signal the inspiratory muscles to _____ the breathing rate.

51) When blood pH decreases, breathing rate must be _____ to help return the pH to its normal value.

52) When blood pH increases, breathing rate must be _____ to help return the pH to its normal value.

53) You are taking care of two patients in the respiratory ward of the hospital. One of your patients has emphysema and the other has chronic bronchitis.

a) What activity did both patients probably engage in that caused these diseases?

b) What part of the respiratory system is damaged in emphysema?

c) What part of the respiratory system is damaged in chronic bronchitis?

d) Which patient would be able to inhale easier than they would be able to exhale?

e) Which patient would have equal difficulty inhaling and exhaling?

54) Which two respiratory system disorders that we discussed in class are characterized by inflammation of the bronchi?

&_____

Circle the one that is usually related to smoking.

55) As of the year 2000, one third of all cancer deaths are due to _____: only one in ten affected individuals is a non-smoker, highlighting the contribution of smoking to the development of the disease.

Answers to fill-in-the-blank review questions.

1) Mucus and cilia	12) Bronchioles	
Conducting passages	13) Alveoli	
2) Inspiration	Alveolus	
Expiration	14) 6	
3) Larynx	2	
4) Trachea	1	
5) Larynx	7	
6) Epiglottis	5	
7) Thyroid cartilage	3	
8) Thoracic	4	
Bronchi	8	
9) Esophagus	15) Lower	
10) Elasticity	16) Elastic recoil	
11) $A = Nasal cavity$	Diaphragm	
B = Pharynx	External intercostals	
C = Epiglottis	18) Diaphragm	
D = Trachea	External intercostals	

19) Down		
Increase		
Decrease		
20) External intercostals		
Decrease		
21) Serosa (serous membrane)		
22) a) Pleura		
b) Visceral pleura		
c) Parietal pleura		
23) Sprirometer		
33) Into		
Out of		
34) Out of		
Into		
35) Lower		
36) Higher		
37) Red blood cell		
Hemoglobin		
Iron		
39) Four		
40) Bicarbonate ion HCO_3^-		
42) $CO_2 + H_2O -> H_2CO_3$		
43) Hydrogen ion		

Bicarbonate ion $H_2CO_3 \rightarrow H^+ + HCO_3^-$ 44) Cellular aerobic respiration 45) Pons and medulla oblongata (or the brain stem) 46) Aorta Carotid arteries 47) Decreases 48) Increase 49) Increased Decreased 50) Increase 51) Increase 52) Decrease a) Smoking 53) b) Walls of the alveoli c) Bronchi and Bronchioles d) Emphysema e) Chronic bronchitis 54) Asthma

- Chronic bronchitis (circled)
- 55) Lung cancer

Short answer review questions:

1) Explain briefly (3-4 sentences) how the respiratory conducting passages keep the lungs free of bacteria and dust. Explain all aspects of this process.

2) A friend of yours, who is into body piercings, says she wants to get her epiglottis removed (because cool people everywhere are doing it!). What lifestyle changes would she have to do if she did have it removed?

3) Your cool body piercing friend now says she wants to get the folds in the inner wall of her larynx removed. What lifestyle changes would she have to do if she did have them removed?

6) What are two functions of the serosa that surrounds the lungs?

7) What is the condition called when the pleura to a lung is punctured (as might happened from a stab wound to the chest)? _____. Describe briefly (2 –3 sentences) what happens to the lung when the pleura is punctured and explain why it happens.

8) What is the condition called when too little pleural fluid is made? _____. Describe briefly (2-3 sentences) what happens if too little pleural fluid is made and why it happens.

9) Describe the major symptoms if a person...

- a) Stopped making pleural fluid.
- b) Stopped making conducting passage mucus.
- c) Had their epiglottis stuck in the closed position.

10) In the pulmonary loop, CO_2 exits the blood and O_2 enters the blood, whereas in the systemic loop CO_2 enters the blood and O_2 exits the blood. What ensures that each gas molecule moves in the proper direction (exiting vs. entering the blood) in each loop?

11) Explain briefly exactly why lack of iron in the diet causes low energy:

12) Use a chemical equation to show how carbonic acid and bicarbonate ion are formed from carbon dioxide entering the blood.

13) Why does holding your breath cause the blood to get acidic?

14) Describe the effects of hyperventilation on blood CO₂, blood O₂, and blood pH.

15) Describe the effects of hypoventilation on blood CO_2 , blood O_2 , and blood pH.

16) If some evil person injected you with a strong acid, one of the ways your body would react would be to hyperventilate. Explain why this would occur. Your answer must include which part of the body <u>and</u> which chemicals in the body regulate breathing rate.

17) Briefly explain (3 or 4 sentences) How hyperventilation causes a increase in blood pH. (Your explanation must include a certain chemical equation we discussed in lecture.)

18) Define the term alkalosis and the term acidosis. Your definitions should include exact pH values.

19) Compare asthma and emphysema in terms of what parts of the respiratory system are not functioning correctly.

Answers to short answer review questions:

1) The air we breathe in contains many contaminating particles (such as dust, soot, spores, pollen, etc.). The conducting passages are lined with a sticky mucus that traps most of the particles before they reach the lungs, To remove the mucus, the cells that line the passages have cilia (small hair-like extensions) that slowly push the mucus upward where it is eventually swallowed.

2) She would not be able to eat or drink because the epiglottis keeps food and beverages from entering the windpipe!

3) These folds are the vocal cords. Their vibrations are what allow us to say words and make sounds. If they were removed, the person would no longer be able to speak. (Aside: Some dog owners have their dog's vocal cords removed to stop incessant barking).

6) The serosa that surrounds the lungs keeps the lungs attached to the wall of the thoracic cavity and the serosa also allows the lungs to slide and expand as we breathe in and out.

7) Pneumothorax is the condition where the pleura has been punctured. Pneumothorax causes the lung to collapse. This occurs because the pleural fluid (the fluid that fills the pleura) is required to keep the lungs attached to the wall of the thoracic cavity. When the pleura is punctured, air enters the pleura and replaces part of the fluid. The air can't keep the lung attached to the cavity all so the lungs collapses.

8) Pleurisy is the condition where too little pleural fluid is made. Pleurisy causes painful breathing because one function of the pleural fluid is to lubricate the lungs as they slide inside the thoracic cavity during breathing. The lungs scrape against the inner thoracic cavity with every breath if not enough pleural fluid is present.

- 9) a) Painful breathing
 - b) Increased lung infections from inspiration of bacterial and fungal spores.
 - c) Asphyxiation (suffocation) because a closed epiglottis block the windpipe.

10) Diffusion ensures that all gas molecules move in the proper direction (exiting vs. entering the blood) in each loop. All dissolved molecules spontaneously move from areas where they are at a high concentration to areas where they are at a low concentration. In the pulmonary loop, CO_2 is at a higher concentration in the blood then in the alveoli of the lungs, therefore it spontaneously diffuses out of the blood. Oxygen, on the other hand, is at a higher concentration in the alveoli than in the blood. This causes it to diffuse into the blood. In the systemic loop the situation is reversed. CO_2 is a higher concentration in the tissues than in the blood, so it enters the blood. Oxygen is at a higher concentration in the tissues, so it exits the blood.

11) Iron is used by hemoglobin protein to carry oxygen in the blood. If a person has below normal levels of iron in the blood, their cells will receive less oxygen. Since cells use oxygen to make energy for themselves (by the process of cellular aerobic respiration) an iron shortage leads to an energy shortage in the body. This series of events is called iron-poor anemia.

12) $CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$

13) One function of breathing is to remove carbon dioxide from the blood. If a person holds their breath, CO_2 levels in the blood will therefore increase. Because CO_2 reacts with the water in the blood to form H⁺ (acid), an increase in blood CO_2 leads to an increase in the blood's acidity.

14) Hyperventilation will decrease blood CO₂, increase blood O₂, and decrease blood H⁺.

15) Hypoventilation will increase blood CO₂, decrease blood O₂, and increase blood H⁺.

16) Being injected with acid would cause an increase in the blood's H^+ concentration. The breathing control centers in the brain stem monitor the blood's H^+ concentration to set breathing rate. An increase in H^+ concentration causes the breathing control center to increase the breathing rate (hyperventilation).

17) One function of breathing is to remove carbon dioxide from the blood. The faster a person breathes, the more CO_2 is removed from the blood. CO_2 reacts with the water in the blood to form H⁺ (acid):

 $CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$

Removing more CO_2 from the blood (by hyperventilation) therefore also removes H⁺ from the blood. Removing H⁺ from any liquid will increase that liquid's pH.

18) Alkalosis is blood that is more basic than normal blood. The normal pH of blood is 7.4, so alkalosis means blood above pH 7.4. Acidosis is blood that is more acidic than normal blood. The normal pH range of blood is 7.4, so acidosis means blood below pH 7.4.

19) In asthma, the conducting passages (especially the bronchi and trachea) are inflamed and swollen. In emphysema, the alveoli in the lungs are damaged.