Respiratory system (chapter 22)

Page 1

Respiratory system

The organ system that exchanges gases between the air in the lungs and the blood

- In lungs, O₂ enters the blood and CO₂ exits the blood
- The two major parts are the airway passages and the lungs

Fig 22.2

Airway passages (the respiratory tract):

The passageways that carry air in and out of the lungs

- The airways also clean and warm the air
- Cells of passageways secrete mucus (to trap contaminant particles in air) and have beating cilia (hairs to propel mucus up away from lungs)

Figs 22.2 and 22.5

Airway organs:

- Nasal cavity = open air chamber behind nose
- Pharynx = The upper throat (behind the nasal and oral cavities)

 $\sqrt{\text{Conducts air, food, and water}}$

• Larynx (voice box) = A hollow cartilage structure at the junction of the trachea and the pharynx

 $\sqrt{\text{Epiglottis}} = \text{A cartilage flap that covers the windpipe when we swallow, to divert food and water into the esophagus}$

- $\sqrt{\text{Vocal cords}}$ = Vibrating folds in the larynx that make the sounds when we speak
- $\sqrt{\text{Thyroid cartilage (Adam's apple)}}$ = The largest part of the larynx cartilage
- Trachea (windpipe) = A tube that conducts air from the larynx down into the thorax, towards the lungs
- Primary (left and right) bronchi = tubes formed by branching of trachea

 $\sqrt{\text{Each bronchus enters a lung}}$ Figs 22.2, 22.4, 22.6, 22.7, and 22.9

Lungs

Two spongy elastic organs in the thoracic cavity that draw in air and exchange gases with blood

- Each bronchus branches repeatedly in lungs
- Bronchioles = The smallest branchings of the bronchi
- Alveoli = Round air sacs at the end of bronchioles where O₂ enters blood and CO₂ exits blood

 \sqrt{Gases} easily diffuse through the walls of the alveoli and the capillaries, which are both simple squamous epithelial tissue

• Air is drawn into lungs (inspiration) when we expanded them using the inspiratory muscles

Figs 22.2, 22.9, 22.10, 22.11, and 22.22

Inspiratory muscles

Muscles that expand the lungs to a larger size, which causes inspiration of air into the lungs

- Diaphragm = Dome shaped muscle under the lungs that expands the lungs downward
- External intercostal muscles = Muscles between the ribs that expand the lungs anteriorly and laterally
- (No muscles are needed for normal expiration: The elastic recoil of the lungs automatically contracts the lungs back to a smaller size, which causes expiration of air out of the lungs).

Figs 11.18, 22.2, 22.14, and 22.17; Table 11.7

Pleura

A fluid-filled double membrane (a serosa) between the lungs and the thoracic cavity wall

- Inner membrane attaches firmly to lungs
- Outer membrane attaches firmly to thoracic cavity wall
- Pleural fluid = fluid between inner and outer membrane of pleura

 $\sqrt{\text{Creates a vacuum that holds lungs to thoracic cavity wall}}$

 $\sqrt{\text{Lubricates sliding of lungs along wall when breathing}}$ Figs 22.14 and 22.16

Respiratory system Spirometry	Page 5					
Measurement of the volumes of air breathed	Fig 22.18 and 22.19					
Tidal volume (TV) The volume of air moved in and out of the lungs in each normal relaxed breath						
• about 500 ml	Fig 22.18 and 22.19					
Inspiratory reserve volume (IRV) The maximum volume of air that can be forcibly inspired <i>after</i> a inspiration						
• about 3000 ml	Fig 22.18 and 22.19					
Expiratory reserve volume (ERV) The maximum volume of air that can be forcibly	v expired <i>after</i> a tidal					

The maximum volume of air that can be forcibly expired *after* a tidal expiration

•	about	1100	ml
		1100	

Fig 22.18 and 22.19

Vital capacity (VC)

The maximum volume of air that can be forcibly expired *after* a maximum inspiration (inspiratory reserve + tidal volume + expiratory reserve)

• about 4600 ml

Fig 22.18 and 22.19

Residual volume (RV)

Air volume that remains in lungs after a maximum expiration

• about 1200 ml

Fig 22.18 and 22.19

Page 6

Gases always move in and out of blood by simple diffusion (molecules moving spontaneously from high to low concentration areas)

• In pulmonary loop capillaries...

 $\sqrt{O_2}$ enters the blood because the air in lungs has a higher O_2 concentration than the blood

 $\sqrt{\text{CO}_2}$ exits the blood because the lungs have a lower CO_2 concentration than the blood

• In systemic loop capillaries...

 $\sqrt{O_2}$ exits the blood because the tissues have a lower O_2 concentration than the blood

 $\sqrt{\text{CO}_2}$ enters the blood because the tissues have a higher CO_2 concentration than the blood

How oxygen is carried in the blood:

- O_2 enters the blood in the pulmonary loop and exits the blood in the systemic loop
- O_2 is carried on Fe (iron) atoms
- The iron atoms are part of hemoglobin protein
- The hemoglobin proteins are inside red blood cells Figs 22.22, 22.23, and 22.25

How carbon dioxide is carried in the blood:

• CO_2 enters the blood from cells in the systemic loop. When CO_2 enters the blood, most of it becomes HCO_3^- (bicarbonate ion)

 CO_2 -> HCO_3^- + H^+

- $\sqrt{\text{For each CO}_2}$ that becomes HCO_3^- , a hydrogen ion is created in the blood
- $\sqrt{\text{The more CO}_2}$ that enters the blood = The more H⁺ in the blood
- In the pulmonary loop, HCO_3^- becomes CO_2 again. The CO_2 exits the blood into the lungs

 HCO_3^- + H^+ -> CO_2

- $\sqrt{\text{For each HCO}_3^-}$ that becomes CO₂, a hydrogen ion is removed from the blood
- $\sqrt{}$ The breathing rate controls how fast HCO₃⁻ becomes CO₂, and therefore controls the blood's H⁺ concentration
- $\sqrt{\text{Normally}}$, our breathing rate is set so that the amount of H⁺ removed from the blood by breathing exactly balances the amount of H⁺ that created in the blood by CO₂

- Hypoventilation (less than normal breathing) increases the blood's H⁺ concentration. Hyperventilation decreases the blood's H⁺ concentration. Figs 22.22, 22.28, and 26.16

	CO ₂ +	H_2O	\rightarrow	H_2CO_3	\rightarrow	H^{+}	+	HCO ₃ ⁻
(from cells)			(carbonic acid)		(bicarbonate)			

Breathing control center of brain

The pons and the medulla (in the brain stem) control respiration rate (breaths per minute)

• Normal respiration rate = 12 -18 breaths per minute

 $\sqrt{\text{Brain sends impulses to contract diaphragm and external intercostal muscles}}$

 \bullet Breathing rate changed when blood's CO_2 and O_2 levels change

 $\sqrt{\text{CO}_2}$ high or O_2 low = breathing rate increases

 $\sqrt{\text{CO}_2 \text{ low } or \text{ O}_2 \text{ high}}$ = breathing rate decreases

• Oxygen level measured by O_2 sensors in aorta and carotid artery

 $\sqrt{\text{The O}_2}$ information is sent to the breathing control center

- CO_2 (not O_2) is the major determinant of breathing rate
- CO₂ level not directly measured by breathing control center; Brain uses H⁺ level (blood pH) to estimate CO₂ level

 $\sqrt{\text{Because one H}^+\text{ is made for each CO}_2}$ that enters blood

 $\sqrt{\text{High CO}_2}$ = High H⁺ = low blood pH = acidosis (acidic blood)

 $\sqrt{\text{Low CO}_2 = \text{Low H}^+ = \text{high blood pH} = \text{alkalosis (basic blood)}}$ Figs 22.20, 26.16, and 26.18

Respiratory system disorders:

• Emphysema* = walls of alveoli break down

 $\sqrt{Passages collapse during expiration}$

 $\sqrt{Victims}$ have difficulty exhaling

• Chronic bronchitis* = lower respiratory passages inflamed; produce excess mucus

 $\sqrt{\text{Coughing, increased lung infections, gas exchange reduced}}$

 $\sqrt{\text{Victims tend to display cyanosis (blue color due to hypoxia (insufficient O₂))}$

• Lung cancer* = uncontrolled cell growth in bronchi or lungs

 $\sqrt{\text{Cancer metastasizes (invades other tissues) rapidly}}$

 $\sqrt{90\%}$ of victims smoked

 $\sqrt{$ Only 7% of victims survive

• Asthma = easily inflamed bronchi

 $\sqrt{\text{Inflammation often triggered by specific irritant (allergies)}}$

 $\sqrt{\text{Causes coughing and shortness of breath}}$

(* respiratory disease associated with smoking)