Water chemistry (chapter 2)

Water (H_2O)

A "V" shaped molecule

• Living things are mostly water

Fig 3.2

Substances are classified as either <u>hydrophilic</u> or <u>hydrophobic</u>, depending on whether they attract water or not

Hydrophilic substance = Any substance that attracts water

- Some typical traits of hydrophilic substances:
 - a) Water spreads out on their surface (example: Paper)

or...

b) They dissolve in water (example: Table salt)

Hydrophobic substances = Any substance that does not attract water

- Some typical traits of hydrophobic substances:
 - a) Water beads up on their surface (example: Wax)

or...

b) They do not dissolve in water (example: Oil)

How to predict whether a substance is hydrophobic or hydrophilic by looking at its molecules:

1) Ions are always hydrophilic

 $\sqrt{\text{Example: Table salt, made of Na}^+}$ and Cl^- ions

2) Molecules where all (or most) of the carbons have partial charges are hydrophilic ("polar molecules")

 $\sqrt{\text{Example: Glycerol}}$

3) Molecules where all (or most) of the carbons have don't have partial charges are hydrophobic ("non-polar molecules")

 $\sqrt{\text{Example: Octane}}$

Fig 3.2 and 3.6

Each water molecule has partial charges

 \bullet The oxygen is $\delta^{\scriptscriptstyle -}$ and the hydrogens are $\delta^{\scriptscriptstyle +}$

$$\delta^{-} O H \delta^{+}$$

H δ^{+}

• Hydrophilic molecules are hydrophilic because they attract water electrostatically

 $\sqrt{\text{Water's }\delta^- \text{ oxygen is attracted to any positive charge}}$ (such as + ions and δ^+ hydrogen)

 $\sqrt{\text{Water's } \delta^+ \text{ hydrogen is attracted to any negative charge}}$ (such as – ions and δ^- oxygen or nitrogen)

• Hydrophobic molecules are hydrophobic because they have little or no charges to attract water molecules

Fig 3.2

Hydrogen bond

The electrostatic attraction between a δ^+ H and any δ^- atom (such as oxygen or nitrogen)

- Example: Water molecules bond to each other by hydrogen bonds
- Hydrogen bonds are shown as a dashed line

Figs 3.2 and 3.4

Dissolve

When a substance is evenly spread out in a liquid

• Three important terms related to dissolving a substance in a liquid:

 $\sqrt{\text{Solvent}}$ = The liquid

 $\sqrt{\text{Solute}}$ = The substance that is dissolved

 $\sqrt{\text{Solution}}$ = The liquid and the substance dissolve in it

• When a substance dissolves in water, each molecule of the substance becomes coated with water molecules

Figs 2.14, 3.6, and 3.7

Page 5

Concentration

The amount of solute per volume of solution

• Concentrations are usually stated as "grams per liter" (grams of solute per one liter of solution)

• A solute written in brackets means the concentration of that solute

 $\sqrt{\text{Example: [Glucose]}}$ = The concentration of glucose

Diffusion

The spontaneous movement of a solute from an area of its high concentration to an area of its low concentration.

• Cell membranes can block diffusion of most solutes

Osmosis

The spontaneous movement of water across a selectively permeable membrane towards the side with the higher total solute concentration

- "Selectively permeable" = Water can cross membrane but solutes cannot
- "Water moves towards solutes" is a way to remember osmosis
- Hypertonic = Higher [solute] than a cell's cytoplasm

 $\sqrt{\text{Cells}}$ lose water when put in hypertonic solutions

• Hypotonic = Lower [solute] than a cell's cytoplasm

 $\sqrt{\text{Cells}}$ gain water when put in hypotonic solutions

• Isotonic = Equal [solute] to a cell's cytoplasm

 $\sqrt{\text{Cells don't gain or lose water when put in isotonic solutions}}$

Acid

Any molecule that adds H⁺ ions to water

• Examples:

HCl \longrightarrow H⁺ + Cl⁻ Hydrochloric acid

 $H_2CO_3 \longrightarrow H^+ + HCO_3^-$ Carbonic acid Figs on pages 53 and 54

Base

Any molecule that removes H⁺ ions from water

• Examples:

 $OH^- + H^+ \longrightarrow H_2O$ Hydroxide ion

 $HCO_3^- + H^+ \longrightarrow H_2CO_3$ Bicarbonate ion

Figs on pages 54

Water molecules can dissociate:

 $H_2O \Leftrightarrow H^+ + OH^-$

- Only a small number of water molecules are dissociated at any one moment
- In pure water, $[H^+] = [OH^-]$

Fig on page 53

pH scale

A number (from 0 to 14) that indicates how acidic or basic a solution is

• $pH = -log[H^+]$

 $\sqrt{\text{Example: [H^+]}} = 0.0001 = 10^{-4} = \text{pH 4}$

 $\sqrt{\text{Example: [H^+]}} = 0.00000001 = 10^{-9} = \text{pH 9}$

• Pure water has a pH of 7 and is called "neutral" (not acidic or basic)

 $\sqrt{[H^+]} = [OH^-]$ at pH 7

• Solutions that are acidic have a higher [H⁺] than pure water

 $\sqrt{\text{Acidic solutions have pHs lower than 7}}$

 $\sqrt{}$ The higher the [H⁺], the lower the pH

 \bullet Solutions that are basic have a lower $[H^{\scriptscriptstyle +}]$ than pure water

 $\sqrt{\text{Basic solutions have pHs higher than 7}}$

 $\sqrt{}$ The lower the [H⁺], the higher the pH

Fig 3.8

Buffer

Substances that (when added to a solution) minimize changes in the solution's pH

- Buffers make a solution resistant to acids and bases
- A common buffer in living things is the carbonic acid/bicarbonate ion buffer

H ₂ CO ₃	\leftrightarrow	HCO ₃ ⁻	+	H^{+}
Carbonic Acid		Bicarbonate ion		Hydrogen ion

• The carbonic acid replaces any lost H⁺ by:

- $H_2CO_3 \longrightarrow H^+ + HCO_3^-$
- The bicarbonate ion absorbs excess H⁺ by:

$$HCO_3^- + H^+ \longrightarrow H_2CO_3$$

Fig on page 55