Organic Molecules

Molecules containing carbon atoms

- Non-carbon atoms (for example: hydrogen, oxygen, nitrogen) can also be present in organic molecules
- Other than water molecules, organic molecules are the most abundant molecules in living things
- Organic molecules are often drawn in abbreviated ways:

Figs 4.5 and 4.9

Organic chemistry

Functional groups

Small groups of atoms attached to the carbon atoms of organic molecules

Four important functional groups:

Functional group	Name	<u>Symbols</u>	
С-О-Н	Hydroxyl or "O.H." (polar)	–OH or HO–	
О С—О—Н	Carboxylic acid (polar/ionic) (can release a hydrogen ion)	O COH or COOH	
H / C–N \ H	Amine (polar/ionic) (can absorb a hydrogen ion)	H_2N- or $-NH_2$	
O C-O-P-O ⁻ Phos O ⁻	phate (ionic)	$-PO_4^{3-}$ or (P)	

Organic chemistry

Cells frequently carry out chemical reactions where organic molecules are linked together or split apart

Dehydration synthesis

A reaction where two organic molecules are linked together by loss of a water molecule

• Usually each of the two molecules has a hydroxyl functional group

 $\sqrt{$ One oxygen atom from the hydroxyls becomes the bridge linking the two molecules

 $\sqrt{}$ The other atoms (one oxygen and two hydrogens) become a water molecule

Fig 5.2

Hydrolysis reaction

A reaction where two organic molecules are split apart by addition of a water molecule

• Usually an oxygen atom forms the bridge between the two linked molecules

 \sqrt{A} water molecule combines with the oxygen atom to split the two organic molecules apart

 $\sqrt{}$ The reaction forms two hydroxyl groups (one on each organic molecule)

Fig 5.2

Page 3

Organic chemistry

Page 4

Biological Macromolecules

Large organic molecules found within all living things

- The four macromolecule types are carbohydrates, lipids, proteins, and nucleic acids
- All four macromolecule types are polymers assembled by linking smaller monomer molecules

Macromolecule type:	Its monomers
Carbohydrates	Monosaccharides
Lipids	Fatty acids and glycerol (usually)
Proteins	Amino acids
Nucleic acids	Nucleotides

Monomers

Small organic molecules

Polymer

A chain of monomers linked together